特集号の宣伝

特集号の宣伝 Nanocarbons: Advances and Innovations

ひょんなことから、特集号のゲストエディターを務めることになりました。 Surfaces | Special Issue : Nanocarbons: Advances and Innovations オープンアクセス(OA)ジャーナルのため、掲載料(およそ27万円)が必要です。ま...

2025年6月7日土曜日

Catch Key Points of a Paper ~0239~

論文のタイトル: Controlling Intramolecular Förster Resonance Energy Transfer and Singlet Fission in a Subporphyrazine–Pentacene Conjugate by Solvent Polarity

著者: Dr. David Guzmán, Ilias Papadopoulos, Giulia Lavarda, Parisa R. Rami, Prof. Rik R. Tykwinski,* Dr. M. Salomé Rodríguez-Morgade,* Prof. Dirk M. Guldi,* Prof. Tomás Torres*
雑誌名: Angewandte Chemie International Edition
巻: Vol. 60, Issue 3, pp. 1474–1481
出版年: 2021
DOI:  https://doi.org/10.1002/anie.202011197

背景

1: 研究の背景

  • 一重項励起子分裂(SF)は、1つの光子吸収後に一重項励起状態を相関三重項励起状態に変換するプロセスです。
  • SFは、単接合型太陽電池の性能向上に大きな可能性を秘めています。
  • SFを導入することで、太陽電池の理論的なエネルギー変換効率限界(Shockley-Queisser限界)を約32%から45%に引き上げられる可能性があります。
  • 過去10年間、SFのための材料特定、特性評価、最適化に主要な努力が払われてきました。

2: 未解決の問題点

  • SF材料の多用途性やパンクロマチック(広範囲の光を吸収する)な光捕集能力の向上に関して、重要な課題が残っています。
  • 以前の研究では、Subphthalocyanine (SubPc) や Porphyrazine (ZnPz) 共役体をエネルギーアンテナ/ドナーとして利用し、分子内Förster共鳴エネルギー移動 (i-FRET) を介してエネルギーをペンタセン二量体 (Pnc2) に供給しました。
  • これらの従来のドナー(SubPcやZnPz)の使用では、分光学的重なり(蛍光と吸収のスペクトルオーバーラップ、J)を合成による化学構造変更なしに微調整することが困難でした。
  • その結果、SubPcやZnPzのパンクロマチック吸収、特に400から600 nmの範囲での吸収が最適化されないままでした。

3: 研究の目的

  • 本研究は、エネルギーアンテナの蛍光を溶媒極性によって微調整し、それによりJを調整するというコンセプトによって、合成変更の必要性を回避することを目指しました。
  • この目的のために、Subporphyrazine (SubPz) と Pnc2 からなる共役体 C を選択しました。
  • 特定のSubPz(hexaaryl-subporphyrazine)をドナーとしてPnc2に結合させました。SubPzは450-550 nmに強い吸収を持ち、そのブロードな蛍光がPnc2の最も強い吸収とよく一致します。
  • 溶媒極性を用いて、SubPzの蛍光、J、Förster速度定数を制御し、最終的に三重項量子収率を最大化することを目指します

方法

1: 研究デザインと対象化合物

  • 本研究では、新しいアンテナ結合型ペンタセン二量体 C の合成と光物理的特性評価を行いました。
  • 共役体 C は、カルボン酸官能基を持つビスペンタセン (B) と、アルコール部分を持つ適切な SubPz 誘導体 (A) をエステル化することで合成されました。
  • 特性評価には、定常状態吸収/蛍光測定、時間分解過渡吸収測定などの手法が用いられました。
  • 研究対象として、SubPzOH (A)、Pnc2COOH (B)、そして共役体 SubPzPnc2 (C) を使用しました。

2: 測定方法と溶媒

  • 化合物の光物理特性を評価するために、定常状態吸収および蛍光測定、時間相関単一光子計数法 (TCSPC)、フェムト秒 (fsTA) およびナノ秒 (nsTA) 過渡吸収分光法が使用されました。
  • i-FRET速度定数や三重項量子収率 (TQY) の決定も行われました。
  • 化合物の吸収特性の比較には、消衰係数が評価されました。
  • これらの測定は、キシレン、トルエン、アニソール、ベンゾニトリルという異なる極性を持つ溶媒中で実施されました。

3: 解析手法

  • 過渡吸収データ解析のために、Bについては3種、Cについては4種の動態モデルが適用されました。
  • SFによる三重項励起状態の生成は、GSB (Ground State Bleaching) の強度の増加によって確立されました。
  • 相関三重項ペアが中間体CT状態を介して形成されることは、860, 970, 1400 nmにおけるフィンガープリントの解析によって示されました。
  • i-FRET速度定数 (kFRET) は、ドナーの蛍光寿命、アクセプターの消衰係数、ドナーの蛍光量子収率、スペクトルオーバーラップ積分などのパラメータを用いて計算されました。
  • 三重項量子収率 (TQY) は、特定の吸収ピークの強度追跡や、CT状態および相関三重項ペア状態の種関連スペクトルの相対強度比較によって決定されました. TQYには約±10%の誤差範囲が考慮されました。

結果

1: 合成と吸収・蛍光特性

  • SubPzOH (A) と Pnc2COOH (B) から、共役体 C がエステル化によって合成されました。 C の収率は 20%でした。
  • C の定常状態吸収スペクトルは、AB の個別のスペクトルの線形重ね合わせであり、基底状態での相互作用がないことを示しています。
  • SubPz (A) は 450 nm付近にブロードな CT バンド、560 nm 付近に Q バンドの強い吸収特徴を示します。
  • 共役体 C は、以前報告された SubPcPnc2 や ZnPzPnc2 に比べ、400-600 nm の範囲でブロードで強い吸収を示し、パンクロマチック性が大幅に向上しています(B単独に対して約85%吸収が増加)。
  • SubPz (A) の蛍光は溶媒極性に依存し、極性溶媒で最大 20 nm のレッドシフトを示します。 A の蛍光量子収率 (FF) も溶媒極性に依存します(キシレンで2.4%、ベンゾニトリルで<1.0%)。
  • 共役体 C では SubPz 中心蛍光は観測されず、Pnc2 中心蛍光に近接しており、強い蛍光消光と効率的な励起状態相互作用を示唆しています。

2: エネルギー移動と一重項励起子分裂の速度

  • 時間分解測定により、共役体 C において SubPz から Pnc2 への効率的な分子内 Förster共鳴エネルギー移動 (i-FRET) が確認されました。
  • C 中の SubPz の一重項励起状態 (1(S1)SubPz,C) は、独立した分子 A よりも速く減衰し、約 3 ps で消失します。
  • この 1(S1)SubPz,C 状態は、i-FRET を介して Pnc2 の一重項励起状態 (1(S1S0)Pnc2,C) に置き換わります。
  • Pnc2 の一重項励起状態は、中間体の CT 状態 (CT(S1S0)Pnc2,C) を経由して、相関三重項ペア状態 (1(T1T1)Pnc2,C) に変換されます。このプロセスはペンタセン二量体における分子内一重項励起子分裂 (i-SF) に対応します.

3: 溶媒効果と量子収率

  • 溶媒の選択は、個々のプロセスの効率に影響を与えます。
  • i-FRET 速度定数 (kFRET) は溶媒極性に依存し、最も無極性なキシレンで最も高く (3.52 x 1011 s-1)、ベンゾニトリルで最も低くなりました (1.14 x 1011 s-1)。 これは SubPz 蛍光と Pnc2 吸収のスペクトルオーバーラップ (J) がキシレンで最大であることと一致します。
  • 三重項量子収率 (TQY) も溶媒に依存します。 キシレンで最も高く (171% ± 10%)、トルエン (152%)、アニソール (151% ± 10%) では低下しました。
  • 興味深いことに、TQY はベンゾニトリルでも 161% ± 10% と高くなりました。 これは、Pnc2 の i-SF が中間体 CT 状態を介して進行し、より極性のある溶媒が有利に働くためと説明されています.
  • この結果は、効率的な i-FRET と効率的な i-SF の微妙なバランスを取ることが極めて重要であることを示しています。

考察

1: 主要な発見とその意味 - 溶媒によるチューニング

  • 本研究の主要な発見の一つは、SubPz エネルギー供与体のユニークなチューニング可能性です。
  • SubPz の蛍光が溶媒極性に依存してシフトする(溶媒依存性蛍光)という特徴が重要です。
  • この溶媒依存性蛍光により、SubPz 蛍光と Pnc2 吸収間のスペクトルオーバーラップ (J) を大幅に変化させることができます。
  • これにより、エネルギー供与体(SubPz)の合成的な変更なしに、分子構造を変えずに i-FRET の速度定数を調整することが可能になります

2: 主要な発見とその意味 - i-FRETとi-SFの連鎖

  • 効率的な分子内Förster共鳴エネルギー移動(i-FRET)は、SubPzからPnc2へのエネルギー移動の主要なメカニズムです。
  • エネルギーがPnc2に移動した後、Pnc2二量体は分子内一重項励起子分裂(i-SF)を起こします。
  • この i-SF のメカニズムには、中間体の CT 状態の生成が含まれます。 一重項励起状態がこの中間体 CT 状態を経て、相関三重項ペア状態に変換されます。
  • キシレンにおける高速な i-FRET (3.52 x 1011 s-1) は、ベンゾニトリルに比べて約3倍速く、これは i-SF が通常非極性溶媒では不利であるという課題を回避する簡単な経路を提供します。

3: 先行研究との比較

  • 本研究で開発された共役体 C は、以前に報告された SubPcPnc2 や ZnPzPnc2 共役体と比較して、吸収特性が改善されています。
  • SubPz ドナーは、400-600 nm の範囲でよりブロードで強い吸収を導入し、これによりパンクロマチック性が向上しました。
  • これは、SubPc (65%) や ZnPz (51%) をドナーとして使用した場合よりも、B (Pnc2) に対する全体の吸収増加率が高くなっています (85%)。

4: 先行研究との比較とCT状態の役割

  • ペンタセンをプロトタイプとするSF材料に関する以前の研究が多数存在し、リンカーを介したカップリング調整による動力学や収率の操作が注目されてきました。
  • i-SFにおける中間体電荷移動(CT)状態の役割は、以前の研究でも議論されてきました [6, 12, 17–26, 35, 36]。
  • 本研究で示されたように、Pnc2におけるi-SFがCT中間体を経由することは、先行研究の結果と一致しています。
  • より極性のある溶媒では CT 状態のエネルギー準位が安定化され、i-SF の駆動力が向上することが、ベンゾニトリルで TQY が再び増加した理由として挙げられています。

5: 研究の限界点

  • SubPzs の合成に関連する困難が、主要な欠点となる可能性があります。
  • エネルギー供与体 SubPz (A) の蛍光量子収率 (FF) が低い(キシレンで2.4%、ベンゾニトリルで<1.0%)ことは、一般的にはFRETのボトルネックとなる可能性があります。 ただし、共役体 C では効率的なエネルギー移動が観察されています。

結論

      • 本研究では、エネルギー供与体 SubPz とエネルギー受容体 Pnc2 からなる新しい共役体 C の合成と特性評価に成功しました。
      • SubPz の固有の溶媒依存性蛍光により、溶媒極性によって SubPz の発光スペクトルと Pnc2 の吸収スペクトルとの重なり(J)を調整できることが実証されました。
      • この溶媒による J のチューニングは、分子構造の合成変更なしに i-FRET 速度定数を制御し、結果として三重項量子収率を最適化する手段を提供します。
      • 特にキシレン中で最適なスペクトルオーバーラップが実現され、高い i-FRET 速度定数 (3.52 x 1011 s-1) と最大三重項量子収率 (171% ± 10%) が得られました.
      • 本研究は、SF効率を向上させるための材料開発において、エネルギー供与体の溶媒依存性蛍光を利用してエネルギー移動とSFの連鎖を外部から制御できるという新しい戦略を示しています。

      将来の展望

              • 高性能太陽電池などへの応用。

              用語集

              • 一重項励起子分裂 (SF): 1つの光子によって励起された一重項状態が、2つの三重項状態に分裂する現象。
              • Förster共鳴エネルギー移動 (FRET): 励起されたドナー分子からアクセプター分子へ、非放射的にエネルギーが移動するプロセス。
              • 分子内 Förster共鳴エネルギー移動 (i-FRET): 同一分子内のドナー部分からアクセプター部分へエネルギーが移動するプロセス。
              • 三重項量子収率 (TQY): 吸収された光子数に対して、生成された三重項状態の数の比率。SFでは理論的に最大200%になりうる。
              • ペンタセン(Pentacene): 有機半導体として使われる多環芳香族炭化水素の一つ。SFを示す代表的な材料.
              • Subporphyrazine (SubPz): ポルフィリン類縁体の一種。本研究でエネルギー供与体として使用。
              • 溶媒依存性蛍光 (Solvatochromic fluorescence): 分子の蛍光スペクトルが溶媒の極性によって変化する現象。
              • スペクトルオーバーラップ (J): ドナーの蛍光スペクトルとアクセプターの吸収スペクトルが重なる度合い。FRET効率に影響する重要な要素.
              • 電荷移動 (CT) 状態: 電子の移動によって生じる励起状態. SFの中間体として関与することがある。

              TAKE HOME QUIZ

              Q1: この研究の主な目的は何ですか? 

              Q2: この論文で研究されている共役体(C)は、主にどのような2つの部分から構成されていますか? 

              Q3: 一重項励起子分裂(SF)とはどのようなプロセスですか?また、太陽電池の効率向上においてどのような可能性を秘めていますか? 

              Q4: 一重項励起子分裂(SF)が起こるための重要な基準は何ですか? 

              Q5: 共役体(C)におけるi-FRETは、SubPzからPnc2へのエネルギー移動を伴いますが、このエネルギー移動効率を制御するために、この研究ではSubPzのどのような特性が活用されていますか? 

              Q6: i-FRETの速度定数と三重項量子収率(TQY)を最大化するための最適な溶媒は何でしたか?その溶媒でのそれぞれの最大値は何でしたか? 

              Q7: キシレン以外の溶媒、特にベンゾニトリルにおいて、TQYが比較的高い値を示した(161%: 10 %)理由は何ですか?ベンゾニトリルは最も低いi-FRET速度定数を示したにもかかわらず、なぜでしょうか? 

              Q8: 以前に報告されたSubPcPnc2やZnPzPnc2共役体と比較して、エネルギー供与体としてSubPzを使用する利点は何ですか? 

               解答

              1. 太陽電池の効率向上に貢献するため、特定の分子共役体(C)における分子内Förster共鳴エネルギー移動(i-FRET)と分子内一重項励起子分裂(i-SF)の挙動を、溶媒極性によって制御することです。
              2. エネルギー供与体として働くヘキサアリールサブポルフィラジン(SubPz)と、主にエネルギー受容体および一重項励起子分裂を可能にする役割を持つペンタセンダイマー(Pnc2)です。
              3. SFは、単一の光子吸収後に生じた一重項励起状態( S1S0)を、相関する三重項励起状態ペア( (1(T1T1))に変換するプロセスです。これを現在の太陽電池に組み込むことで、Shockley-Queisser限界とされる理論的な最大変換効率(約32%)を45%まで向上させる可能性があります。
                • 熱力学的駆動力として、最初の一重項励起状態のエネルギー(E(S1))が、最初の三重項励起状態のエネルギーの2倍(2E(T1))と一致するか、わずかに大きい必要があります(E(S1) + 2E(T1))。
                • 三重項-三重項消滅による高次三重項励起状態の生成を避けるため、第二の三重項励起状態のエネルギー(E(T2))は、最初の三重項励起状態のエネルギーの2倍を超える必要があります(E(T2) > 2E(T1))。
                • 関与する個々の発色団間の最適な電子的カップリングが必要です。
              4. SubPzの溶媒依存性蛍光(solvatochromic fluorescence)が活用されています。溶媒極性の変化に伴ってSubPzの蛍光スペクトルがシフトするため、SubPzの蛍光スペクトルとPnc2の吸収スペクトルの重なり(スペクトルオーバーラップ、J)を調整することが可能になります。
              5. 最適な溶媒はキシレンでした。

                • i-FRET速度定数 (kFRET): 3.52 X 1011 s-1
                • 三重項量子収率 (TQY): 171%: 10 %
              6. Pnc2におけるi-SFは、中間的な電荷移動(CT)状態を経由して進行するためです。より極性の高い溶媒(ベンゾニトリルなど)では、このCT状態のエネルギー準位が安定化され、i-SFの駆動力が向上するため、i-FRET効率が低い場合でもTQYが高くなることがあります。これは、効率的なi-FRETと、CT中間状態を介したi-SFの間のデリケートなバランスの重要性を示しています。

                • より広範囲で強い吸収(特に400-600 nmの範囲)を共役体に付与し、パンクロマティック性を向上させます。論文中の共役体Cは、この範囲でB(Pnc2COOH)単体と比較して吸収が約85%増加しましたが、これはSubPc(65%)やZnPz(51%)よりも優れています。
                • 溶媒極性による蛍光スペクトルのシフトを利用して、合成的な改変を加えることなく、SubPzの吸収/蛍光特性とPnc2の電子的な相補性を維持しつつ、スペクトルオーバーラップ(J)およびkFRETを調整できる点です。



              0 件のコメント:

              コメントを投稿